Interesting information: Abstracts for PCC meeting rejected by LPI

Anonymous reviewers from the LPI have rejected the following two abstracts submitted to the 13th Planetary Crater Consortium 2022 Meeting:

A Probable Holocene Meteorite Crater Strewn Field in Lower Franconia (Germany): Evidence from Digital Terrain Models and Geophysical Surveys (GPR, Electrical Imaging, Geomagnetics)” by J. Poßekel, G. Schulz-Hertlein, T. Ernstson & K. Ernstson

The reason for the rejection by the LPI can be clicked.

Click to enlarge.

Pingos and Mardels: High- Resolution Digital Terrain Models Suggest Meteorite Impact Craters in Addition to Permafrost, Sinkhole and Dead-Ice Formation Models” by K. Ernstson & J. Poßekel

The reason for the rejection by the LPI can be clicked.

Click to enlarge.

The reader of these reasons may make his/her own thoughts.

Those who read the justifications will have to conclude that the LPI reviewers have obviously not yet arrived in the 21st century and are not (or do not want to be) familiar with the latest impact literature.

Four contributions to the LPSC 2022

Contributions to the Saarland (Saarlouis/Nalbach), Steinheim, Singra-Jiloca, Czech and Salt Lake impacts: (peer-reviewed abstracts and iPoster Gallery)









Secondary cratering on Earth: The Wyoming impact crater field: More than three question marks.

Secondary cratering on Earth: The Wyoming impact crater field: More than three question marks. – Comment on the Kenkmann et al. article (GSA Bulletin).

Kord Ernstson, Hans-Peter Matheisl, Jens Poßekel and Michael A. Rappenglück

April 2022

You can click here to download a PDF of an article that includes extensive commentary on the recent article published at GSA Bulletin.

A short version has been accepted as an abstract paper (for poster presentation) for the 85th Annual Meeting of the Meteoritical Society 2022 in Glasgow, Scotland (6079.pdf, LPI Contrib. No. 2695):

The Wyoming Impact Crater Field: Secondary Cratering vs. Primary Cratering.

Abstract, table of contents and the full article follow here directly for reading.

Abstract. – Secondary craters in impacts on moon, planets and their moons are a well known phenomenon, which has been investigated many times. In the article commented by us here, the authors report on a crater strewn field in the American state of Wyoming, which is interpreted as a field of secondary craters of a so far unknown larger primary impact structure and as a first on Earth. We compare the Wyoming crater strewn field with the Chiemgau impact crater strewn field in SE Germany and find that both have nearly identical characteristics of virtually all relevant features, in terms of geometries and petrography. We conclude that the alleged Wyoming secondary crater field is a fiction and the craters attributable to a primary impact. The alleged evidence is very poor to easily refuted. A primary crater does not exist to this day. The negative free-air gravity anomaly referred to, but not even shown, is invalid for this purpose. The Bouguer gravity map shows no indication of a possible large impact structure. Also unsuitable is the use of asymmetries with elongations of assumed secondary craters with a very questionable corridor intersection for the ejecta. Of 31 craters surveyed as proven, 15 are circular (eccentricity 1) and more than half (19) have an eccentricity ≤1.2. Circular and elongated craters are intermixed. The evaluated crater axes may just as well originate in a multiple primary impact. Elongated craters may also result from doublets of overlapping craters that are no longer fresh, as described by the authors themselves. In their paper, the authors do not show a Digital Terrain Model with contour lines for any of the surveyed craters, but only aerial photos blurred by vegetation. A verification of the crater measurements with the deduced eccentricities and strike directions is impossible. Not a single topographic profile over even a single crater in the strewn field is shown, either from DTM data or from an optical leveling, which could have been accomplished in an instant given the relatively small craters. Grave is the misconception that such a large crater field of 90 km length with four separate clusters is not possible according to 20 years old model calculations. A primary impact with multiple projectiles could perhaps be conceivable under rare circumstances, which are described by the authors as not relevant. The alleged impossibility of such a large primary strewn field with referring to the known small impact fields of Morasko, Odessa, Wabar, Henbury, Sikhote Alin, Kaalijärv, and Macha is contradicted by the three larger impact strewn fields of Campo del Cielo, Bajada del Diablo (very likely), and Chiemgau, which are best described in the literature but are not mentioned by Kenkmann et al. with a single word. The comparison of the Wyoming strewn field with the Chiemgau impact crater strewn field of about the same size here in the commentary article proves the scientifically clearly much greater significance of the Chiemgau impact, which must be considered as currently the largest and most significant Holocene impact despite the rejection and ignoring in some parts of the so-called impact community.

GSA Bulletin Kenkmann et al. article. (Kenkmann, T., Müller, L., Fraser, A., Cook, D., Sundell, K., and Rae, A.S.P)

Article Editors: Rob Strachan, W.U. Reimold


Key Words: secondary impact cratering, Wyoming, Chiemgau impact, impact crater strewn fields, Bajada del Diablo, Campo del Cielo

1 Introduction

Continue reading “Secondary cratering on Earth: The Wyoming impact crater field: More than three question marks.”

New article: Rubielos de la Cérida impact shock metamorphism

Shock metamorphism in the Rubielos de la Cérida impact basin (Eocene-Oligocene Azuara multiple impact event, Spain) – reappraisal and photomicrograph image gallery

by Kord Ernstson1 and Ferran Claudin2 (April 2021)

Abstract. – We present a new compilation of previously abundantly studied and published shock effects in minerals and rocks of the Middle Tertiary Rubielos de la Cérida Impact Basin in northeastern Spain. Typologically, we organize by: shock melt – accretionary lapilli – diaplectic glass – planar deformation features (PDF) – deformation lamellae in quartz – isotropic twins in feldspar – kink banding in mica and quartz – micro-twinning in calcite – shock spallation. Included are the newly associated Jiloca-Singra impact in the so-called Jiloca graben and the Torrecilla ring structure, which immediately adjoins the Rubielos de la Cérida basin to the northeast. The compilation and presentation also opposes once more the still existing fundamental rejection of an impact genesis of the Azuara impact event by leading impact researchers of the so-called impact community and by regional geologists from the University of Zaragoza. 

Continue reading “New article: Rubielos de la Cérida impact shock metamorphism”

LPSC 2021 Poster Download

LPSC 2021

The East Bavarian Meteorite Crater Assemblage Revitalized — Probably Linked to the Ries Crater (Germany) Impact Event – Kord Ernstson

Ries Impact Structure (Germany) Long- Distance Cratering Effects: The Mandlberg Phenomenon Seen in Ground Penetrating Radar (GPR). – Jens Poßekel & Kord Ernstson

Lechatelierite in Moldavite Tektites: New Analyses of Composition. – Martin Molnár, Stanislav Šlang, Karel Ventura. Kord Ernstson.

The Enigmatic Holmajärvi (Northern Sweden) Diamictite: Evidence of a Meteorite Impact Deposit. – Peder Minde and Kord Ernstson

Zhamanshinite-Like Black-Glass Melt Rocks from the Saarland (Germany) Meteorite Impact Site. – Kord Ernstson – Dominic Portz – Werner Müller – Michael Hiltl

The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter

New article – (and LPSC 2022 contributions)

The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter

by Kord Ernstson1 & Ferran Claudin2 (Febr. 2021)

Abstract. – The article, which we comment here, interprets sedimentological findings (seismite horizons) at a distance of 80 – 180 km from the two impact structures, the Ries crater and the Steinheim basin, to the effect that, contrary to the impacts at a distance of only 40 km from each other, which have always been assumed to be synchronous, the Steinheim basin is supposed to be several 10 000 years younger than the Ries impact. This is against all probability, but because of the purely statistical impact events, it cannot be completely ruled out. This article therefore does not criticize the statement itself, but refers to equally probable alternatives that have not been considered, as well as to a lack of literature citations. The article loses its fundamental significance to the point of the simple alternative: it may be, but it also may not be, a finding without recognizable importance. A major point of criticism of the article is the common practice in the impact literature of suppressing the diameter of the Steinheim impact structure, which at around 7-8 km is actually twice as large, as it was proven almost 40 years ago by detailed morphological analyses and gravimetric measurements and published in a renowned journal. Since the size of the Steinheim Basin is included in the estimates for the formation of the seismites, it must be stated that the authors started from partly false premises. Here, the findings on the much larger Steinheim impact structure, which cannot be explained away, are presented again, combined with the wish to deal with scientific findings more honestly.


1 University of Würzburg, 97074 Würzburg (Germany); kernstson@ernstson.de; 2 Associate Geological Museum Barcelona (Spain); fclaudin@xtec.cat

A PDF of the complete article may be downloaded here.

Continue reading “The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter”

“Earth’s Impact Events Through Geologic Times”: Comment on Schmieder & Kring article in Astrobiology

Comment on: ” Schmieder, M. and Kring, D. A. (2020) Earth’s Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. – Astrobiology, 20, 91-141.”

by Kord Ernstson1 & Ferran Claudin2 (Jan. 2021)

Abstract: We use Schmieder and Kring’s article to show how science still works within the so-called “impact community” and how scientific data are manipulated and “rubber-stamped” by reviewers (here, e.g., C. Koeberl and G. Osinski). We accuse the authors of continuing to list the Azuara and Rubielos de la Cérida impact structures and one of the world’s most prominent ejecta occurrences of the Pelarda Fm. in Spain as non-existent in the compilation. The same applies to the spectacular Chiemgau impact in Germany, which has been proven by all impact criteria for several years. For the authors’ dating list, we propose that the multiple impact of Azuara is included together with the crater chain of the Rubielos de la Cérida impact basin as a dated candidate for the third, so far undated impact markers in the Massignano outcrop in Italy.


1 University of Würzburg, 97074 Würzburg (Germany); kernstson@ernstson.de. 2 Associate Geological Museum Barcelona (Spain); fclaudin@xtec.cat

A PDF of the complete article may be downloaded here.

Continue reading ““Earth’s Impact Events Through Geologic Times”: Comment on Schmieder & Kring article in Astrobiology”

To play with Google Earth …

Taklamakan Desert (China): a mega-impact structure?

Kord Ernstson

University of Würzburg, 97074 Würzburg (Germany), kernstson@ernstson.de        

October 2020

Abstract.- A Google Earth-based morphological analysis of the Taklamakan Desert in the north of the Himalayas shows characteristics of a 1000 km mega-sized impact structure with an elliptical basin and a pronounced elliptical morphological rim. The elliptical structure may possibly have originated from the thrust of the Indian plate and the Himalayas. A gravity anomaly corresponds with the structure. More impact evidence is not known so far.

Key words: Taklamakan Desert, China, impact structure, gravity anomaly, Indian plate

A pdf full article may be downloaded here.


Continue reading “To play with Google Earth …”